Example of zero divisors

 In a commutative ring

RR with identity, a zero divisor is a nonzero element aRa \in R such that there exists a nonzero element bRb \in R with:

ab=0a \cdot b = 0

Example 1: Integers Modulo 6

Consider the ring Z/6Z={0,1,2,3,4,5}\mathbb{Z}/6\mathbb{Z} = \{0,1,2,3,4,5\} under multiplication mod 6.

  • 2×3=60mod62 \times 3 = 6 \equiv 0 \mod 6

Thus, 22 and 33 are zero divisors in Z/6Z\mathbb{Z}/6\mathbb{Z}.

Example 2: 2×22 \times 2 Matrices

In the ring of 2×22 \times 2 matrices over R\mathbb{R}, consider:

A=[1000],B=[0010]A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}

Then:

AB=[1000][0010]=[0000]A B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}

Since neither AA nor BB is the zero matrix, both are zero divisors.

Comments

Popular posts from this blog

Parad Gandhak Bhasm (Mercury-Sulfur Ash) in Ayurveda

मकोय (Makoy) के आयुर्वेदिक प्रयोग

Eulerian Path & Circuit Problem